What kind of analysis should I use?
We heard (actually, we saw đ) it loud and clear: engagement analysis (if youâre a Mixpanel user, you’ll know this as Insights) is used 3x more often than all other reports, and accounts for more than two-thirds of all analysis. Engagement analysis is also saved, added to a dashboard, shared, or exported 2x more than any other report.
Along with engagement analysis, product teams analyze their data in a variety of other ways. Hereâs how their reporting breaks down in order of usage, regardless of segment, activity level, or region:

Explanation of different report types
Slice and dice user behavior trends to explore them from all angles.
Track the conversion rate of people that go from one event to the next in your sequence.
Gain a deeper understanding of how users interact with your website or application--and who those users are.
Understand how long users continue to come back and find value from your product.
Identify the most frequent paths taken by users to or from any event.
Dashboards aren't technically a report but an overview of all your saved and most important KPIs to track.
Analyze how A/B test variants â¨impact your metrics.
Measures the effects of product or marketing launches on your key metrics
Measures the association between a correlation event and a goal event and quantifies the correlation between the two.
Why is monitoring engagement so popular? Thatâs simple: it provides plenty of room for open-ended exploration of all the events that happen in your product. This kind of analysis lets you freely explore activity and engagement data, and itâs flexible enough that all users can easily drill into the details to find actionable insights.

Try it yourself
Explore Mixpanel
See how an e-commerce product uses Mixpanel to determine how many orders were placed in the US in the last 30 days, broken out by category.
Try engagement analysis with sample dataWhile Data-Informed users leverage all reports, they are primarily focused on three key metricsâengagement, conversion, and retentionâusing reports that answer these questions at a rate of 3x more than Data-Curious users.
Ratio of reports viewed by Data-Informed vs. Data-Curious usersÂ

Itâs interesting to note that not all segments are looking at retention as closely as they are at conversion, with some companies being 4x more likely to analyze conversion compared to retention. Weâll dive into these further below.Â
Industry differences
When looking by industry differences, Retail bucks the trend of favoring engagement analysis. Instead, analysts in the Retail space are drawn to conversion analysis, likely because theyâre closely monitoring purchase flows. Meanwhile, Gaming relies on retention analysis more than any other industry because stickiness (and addiction đŽ) is more of a priority than in other industries.

Segment differences
Unsurprisingly, teamsâ approach to data is closely related to the type of company they work for. Hereâs how we define key company segments:
Although engagement analysis is the most popular form of reporting for companies of all types, there are important differences in how mature and growing companies approach their data.
Startups run retention analysis more than any other segment, perhaps because itâs an important marker of product-market fit. Similarly, Scaleups and Startups are 2x more likely to find value in impact analysis (described in âother reportsâ above) than Tech Giants. That could be because they need to be deliberate about prioritizing developer resources and use data to identify the features most likely to have the greatest impact.
Finally, while Startups, Scaleups, and Tech Giants all run experiments at around the same rate, Startups dedicate the most time to analyzing experiments. This suggests that Startups understand the importance of making the most out of every experiment they run (indeed, their survival may depend on it).
The takeaway
Engagement analysis helps you get a high-level pulse on what’s happening with your product, but for actionable insights that serve Data-Informed product development, you need to go deeper with purpose-built reports. For example, conversion analysis can help teams figure out whatâs driving signups, while user journey analysis can reveal what a user did prior to adopting a feature or upgrading, and retention analysis sheds light on what keeps users coming back.
To best understand the overall impact of usersâ behavior and the details that make that data actionable, teams should alternate between high-level and granular views of their data, using different report types to find the insights they need.
Resource from Mind the Product
Matthew Curry, Director of e-Commerce at Lovehoney, shares his experiences of making data actionable focusing on analytics and decision making in product management.
How should I visualize my data?
For Data-Curious and Data-Informed users alike, creating reports is just the tip of the iceberg. Once they have the reports they need, they focus on making the information easier to consume with visualizations that turn complex information into at-a-glance insights.Â
For engagement analysis, more than 45% of all visualizations are line charts that provide a quick glimpse of trends over time. Nearly 55% of teams opt for non-default visualizations like bar, table, and pie charts to better serve their unique needs and preferences.

Data-Informed users turn to bar charts more frequently than Data-Curious users, and they rely on them nearly the same amount as they do line charts. Table and pie charts are not commonly used, but Data-Curious users are more likely to use either of them.
For conversion analysis, more than 60% of all visualizations are funnel steps that display the drop-off between each step. Following funnel steps, itâs most common to see trends and time-to-convert used. Data-Informed users not only try to build and analyze the right funnel, but are also 30% more likely to track how performance changes over time.


Try it yourself
Explore Mixpanel
See how a SaaS company can take their free to paid conversion analysis a step further with six different funnel visualizations.
Try conversion analysis with sample dataThe takeaway
When in doubt, use default data viewsâtheyâre the default for a reasonđ. Additional visualization options in your product analytics tool exist to help you make data more easily consumable (and therefore, actionable). If the default doesnât work for you, donât be afraid to experiment with other ways of viewing your data.